Large Scale Wind Energy is Bad For the Climate – or Not?

from Mark Z. Jacobson <jacobson
reply-to Offshore windenergy <offshorewind@claverton-energy.com>
to Windenergy <offshorewind@claverton-energy.com>
date 8 April 2010 16:43
subject Re: [Offshorewind] Claverton Energy Group – wind farms
mailing list offshorewind_claverton-energy.com.claverton-energy.com Filter messages from this mailing list
unsubscribe Unsubscribe from this mailing list
hide details 16:43 (18 minutes ago)
The model run for that study is at the wrong scale. The model does not resolve wind turbines nor even wind farms. It merely changes surface drag over entire coarse-resolved grid cells. It is a classic example of using the wrong tool to analyze a problem. When the problem is approached from the scale of the turbine and results extrapolated upward, the result is completely different:
http://www.mdpi.com/1996-1073/2/4/816/pdf
Best regards,
Professor Mark Z Jacobson
This may be of interest
best regards
Ferrand [Andrew Stobart]
Surprise!! Large-scale wind power determined to be bad for climate.
Posted by: “Thecanadianone” rmayhew@ns.sympatico.ca thecanadianone
Date: Tue Apr 6, 2010 7:02 pm ((PDT))
I’ve never been a fan of large-scale wind power generation, for a variety of reasons. Here’s another one: they may be more harmful to the earth’s climate than burning fossil fuel is!!
http://www.atmos-chem-phys.net/10/2053/2010/acp-10-2053-2010.html
Atmos. Chem. Phys., 10, 2053-2061, 2010
www.atmos-chem-phys.net/10/2053/2010/
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Potential climatic impacts and reliability of very large-scale wind farms
C. Wang and R. G. Prinn
Center for Global Change Science and Joint Program of the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Abstract. Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled substantial interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1 °C over land installations. In contrast, surface cooling exceeding 1 °C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.
Final Revised Paper (PDF, 4628 KB)   Discussion Paper (ACPD)
Citation: Wang, C. and Prinn, R. G.: Potential climatic impacts and reliability of very large-scale wind farms, Atmos. Chem. Phys., 10, 2053-2061, 2010.

from Professor Mark Z. Jacobson, Stanford University.

reply-to Offshore windenergy <offshorewind@claverton-energy.com>

to Windenergy offshorewind@claverton-energy.com  date 8 April 2010 16:43

subject Re: [Offshorewind] Claverton Energy Group – wind farms

The model run for that study is at the wrong scale. The model does not resolve wind turbines nor even wind farms. It merely changes surface drag over entire coarse-resolved grid cells. It is a classic example of using the wrong tool to analyze a problem. When the problem is approached from the scale of the turbine and results extrapolated upward, the result is completely different:

http://www.mdpi.com/1996-1073/2/4/816/pdf

Best regards,

Professor Mark Z Jacobson

………………………………………………………………………………………………………………

Ferrand [Andrew Stobart]

Surprise!! Large-scale wind power determined to be bad for climate.

Posted by: “Thecanadianone” rmayhew@ns.sympatico.ca thecanadianone

Date: Tue Apr 6, 2010 7:02 pm ((PDT))

I’ve never been a fan of large-scale wind power generation, for a variety of reasons. Here’s another one: they may be more harmful to the earth’s climate than burning fossil fuel is!!

http://www.atmos-chem-phys.net/10/2053/2010/acp-10-2053-2010.html

Atmos. Chem. Phys., 10, 2053-2061, 2010

www.atmos-chem-phys.net/10/2053/2010/

© Author(s) 2010. This work is distributed

under the Creative Commons Attribution 3.0 License.

Potential climatic impacts and reliability of very large-scale wind farms

C. Wang and R. G. Prinn

Center for Global Change Science and Joint Program of the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract. Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled substantial interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1 °C over land installations. In contrast, surface cooling exceeding 1 °C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.

Final Revised Paper (PDF, 4628 KB)   Discussion Paper (ACPD)

Citation: Wang, C. and Prinn, R. G.: Potential climatic impacts and reliability of very large-scale wind farms, Atmos. Chem. Phys., 10, 2053-2061, 2010.