What area of wind turbines would be needed in reasonable sites in the UK to in one year generate all UKs power demand?

See original Daily Telegraph article at:


(Obviously a) ignoring mismatches between supply and demand whic h can be dealt with in a variety of proven ways

and  b) obviously you wouldn’t in fact build them in one square, (this is just for illustration) but rather in lines only about 2 deep.


A 5 MW turbine rotor diameter is 126m ( from the Repower website http://www.repower.de/index.php?id=12&L=1 )

According to Martin Alder, Optimum Energy, a wind farm owner and developer:

Across wind turbine spacing =  3 x dia (Assume tower to tower)

Down wind  turbine spacing  = 5 x dia

According to Colin Palmer, of Wind Prospect, a leading wind farm developer, load factors of 30 – 35% onshore, and 40% offshore are readilly achievalbe. 

So assume 33%.


Take a 70 mile by 70 mile square. This equals 112 km by 112 km

So downwind, turbine spacing (tower to tower) will be 126 x 3 = 378m. Thus in 70 miles / 112 km we can accommodate (112 x 1000 / 378 ) +1 = 297.3 towers (allowing half blade length to protrude out of area at edges).

Similarly, cross wind, we need 5 x 126 = 630 m. Thus in 70 miles / 112 km we can accommodate (112 x 1000 /630) +1 = 178.8 towers (again allowing half blade length to protrude out of area at edges).

Thus a 70 mile by 70 mile square can accommodate 297.3 x 178.8 = 53,157 turbines..

At 5 MW each, these will generate at peak 265.7 GW.

Assuming reasonable sites and a 1/3 , 33% load factor, this will generate on average 79.73 GW.

Note:  The issue of matching a variable supply to a varying demand, and what do do when there is no wind, is dealt with in numerous articles on the Claverton Web Site, and this compressed note from Dr Mark Barrett – it is a an issue that can be dealt with at an affordable price with perfectly well known and exisitng methods:

from Dr Mark Barrett:

” Matching demand and supply can be done with:
1.      Demand interruption, fuel switching
2.      Storage heat/elec /chemical in fridges, EVs, HW tanks, CHP heat,
pumped storage, existing hydro, chemical fuels etc etc.
3.      Dispatchable renewable (biomass, hydro…) and fossil
4.      Transmission (ie European Supergrid) connecting large geographic areas, as a diversifier and facilitator

Route is to develop 1-4 on least cost path. Retain existing fossil and build more if
necessary (e.g. open cycle gas turbines). but maybe not least cost.

This is discussed and modelled in my work and Gregor Czisch’s, though there are
many details to resolve and the 2050 system is impossible to predict, not
least demand.

Renewable electricity system: Feasibility of a high renewable electricity
Barrett, M. 2007, A Renewable Electricity System for the UK. In Renewable
Energy and the Grid: The Challenge of Variability, Boyle, G., London:
Earthscan. ISBN-13: 978-1-84407-418-1 (hardback).


 Best wishes


Dr Mark Barrett, Principal RCUK Academic Research Fellow
Energy Institute, University College London
Room 227, Wilkins Building, North Cloister
Gower St, London WC1E 6BT
Email: Mark.Barrett@ucl.ac.uk
Site : www.bartlett.ucl.ac.uk/markbarrett/Index.html
Tel UCL: +44 (0)20 7679 2593
Tel Mobile: +44 (0)7837 338297
Tel Home: +44 (0)1206 542596
Skype: MarkAlexBarrett (Mark Barrett)

Dr. Gregor Czisch has intesnively studied integrating large scale wind generation into Europe:




Ausgesuchte Veröffentlichungen
Dissertation: Szenarien zur zukünftigen Stromversorgung
Low Cost but Totally Renewable Electricity Supply ..
Effects of Large-Scale Distribution of Wind Energy ..
Global Renewable Energy Potential and Approaches to its Use

2 comments on “What area of wind turbines would be needed in reasonable sites in the UK to in one year generate all UKs power demand?

  1. Pleased to see your site.

    Dave Andrews article Daily Telegraph July 16th page 5 —

    Newspaper says must contact you to replicate article in a FLIER in financing by Private placing for the funding of 600 Mega watt (MG) of power generation that we are planning

    Copyright — ? though yours was the most positive of all articles and very encouraging.

  2. Graham, Ian to me
    show details 17 Aug (1 day ago) Reply

    Morning Dave,

    The minimum turbine spacing recommendations are along the same lines as you quoted with 3 blade diameters across wind and 6 blade diameters down wind. As you know this is very general guidelines.

    Anything else drop me an email

    Kind regards

    Ian Graham
    Sales Support Engineer

    REpower UK Ltd.
    7th Floor, The Stamp Office
    10 Waterloo Place
    EH1 3EG
    United Kingdom

    phone: +44 – 131 5585884
    fax: +44 – 131 623 9284
    mobile: +44 – 7506 405023
    e-mail: ian.graham@repower-uk.co.uk
    Internet: http://www.repower-uk.co.uk
    REpower UK Limited is a private limited company registered in Scotland number SC253885, VAT number GB831626145 with its registered office and principal place of business at 7th Floor, The Stamp Office, Edinburgh, EH1 3EG, United Kingdom.

    From: Carter, Michael
    Sent: 16 August 2009 11:12
    To: Graham, Ian
    Subject: FW: turbine spacing for a large wind farm

    Hi Ian,

    Could you pick up this enquiry please?



    Sent: 29 July 2009 17:36
    To: Resource Mailbox DE Vertrieb-I
    Subject: turbine spacing for a large wind farm

    Please confirm turbine spacing for a large wind farm.

    I have 3 blade diameters across wind, and 5 down wind?


    Dave Andrews

    Dave Andrews
    Claverton Energy Group
    UK + 44 (0) 755 4452359

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.